Chapter 8: Middle Cass River

Findings of inventory, critical areas and recommendations for BMP's

Figure 8.1 Middle Cass River Subwatersheds

8.1 Middle Cass River Summary

The Middle Cass River includes the mainstem of the Cass River in Novesta Township, Tuscola County downstream to the city of Vassar. The Middle Branch also includes several tributaries including the White Creek, Sucker Creek and numerous county designated drains. The Middle Cass River sub-basin occupies about 40% of the watershed totaling 231,462 acres and is further divided into nine sub-basins described in Table 8.1.

Table 8.1Middle Cass Sub-Watersheds									
Sub- watersheds	Acres	Sq. Miles	% of Total Watershed						
Middle Cass River	231,462		39.9						
01-Clark Drain	25,804	40.3	4.5						
02-North Branch White Creek	19,236	30.1	3.3						
03-South Branch White Creek	32,449	50.7	5.6						
04-White Creek	13,917	21.7	2.4						
05-Cedar Run	24,920	38.9	4.3						
06-Sucker Creek	38,179	59.7	6.6						
07-Butternut Creek	11,833	18.5	2						
08-Scott Drain	29,046	45.4	5						
09-Moore Drain	36,078	56.4	6.2						

Most of the Middle Cass River is part of the Southern Michigan/Northern Indiana Drift Plains Ecoregion. This ecoregion is characterized by its soils, varying landforms, and broad till plains. The soils of this region have more drainage than the soils of the Huron and Erie Lake Plains region and are more nutrient-rich than the soils to the north of this ecoregion. This region's soils and landforms make for an agricultural industry that typically produces feed grain, soybeans, and livestock (Ecoregion Details: Southern).

The land use and cover in the Middle Cass River is 49.3% agricultural and 46.6% natural. Subwatersheds that are dominated by agricultural lands include the Butternut Creek, Cedar Run White Creek, South Brank White Creek, and the Clark Drain (North Branch White Creek). The Moore Drain and Scott Drain of White Creek, Sucker Creek, and the North Branch of the White Creek are dominated by natural land cover.

8.2 Middle Cass River causes and sources of impairments and threats (EPA Element A) Water body use designations (EPA, A.1)

Designated Uses

A stream or site in the watershed is listed as impaired if it is failing to meet one or several designated uses as defined by the State of Michigan. Designated uses for the Middle Cass River and its tributaries include:

- Agriculture Irrigation water for crops or water for livestock
- Wildlife and Other Indigenous Aquatic Life –Aquatic life and wildlife can thrive and reproduce.
- **Total and Partial Body Contact** Recreational (swimming, fishing, boating). All waters protected for recreation shall not exceed specific levels of *E. coli* from May to October
- Warm Water Fishery Water supports warm water fish species including reproduction and sustainability

Subwatersheds that have impaired designated uses as determined by MDEQ water quality testing are Butternut Creek and Moore Drain. Butternut Creek was included in a 2008 TMDL for not meeting the warm water fishery use designation from low dissolved oxygen (DO) and growth of macrophytic aquatic vegetation. Moore Drain is impaired for not meeting the designated use standards for wildlife and other indigenous aquatic life from direct habitat alterations and other flow regime alterations. The 2008 TMDL for DO identified the Cass River from East Dayton Road to Deckerville Road as the impairment area shown in Figure 3.7 of Chapter 3. The cause of the impairment is abundant plant growth due to organic enrichment from agricultural NPS within the watershed.

Table 8.2 compiles information from the impaired waterbodies list provided by MDEQ and information gathered during the 2011 inventory. Sub-watersheds were inventoried via instream surveys and/or windshield surveys. Chapter 3 describes the methodology used for each of the inventory methods. The North Branch White Creek, South Branch White Creek, White Creek, and Sucker Creek are listed as attaining all designated use by MDEQ and were not inventoried.

Impaired sub-watersheds were priority for in-stream inventory to identify sources of pollution. Two sub-watersheds in the Middle Cass River: Butternut Creek and Moore Drain are listed as impaired by the MDEQ and were inventoried via in-stream surveys by the Tuscola Conservation District during the 2011 field season. Additional subwatersheds identified during the inventory include the Clark Drain which is suspected of not meeting water quality criteria for total and partial body contact. The Cedar Run White Creek and the Scott Drain were inventoried along the mainstem Cass River due to extensive streambank erosion and suspicion of impacts to the warm water fishery use designation.

			N7 .
Middle Cass River Sub-basin	Impaired Uses per MDFO in-stream	Impacted	Notes
	surveys	Impactou	
2012 Integrated Report (IR)			
10-HUC:0408020502	Fish Consumption		PCB's in Water Column;
			2013 TMDL
Clark Drain			
AUID: 040802050201-01	Not assessed by MDEQ	Total and	Extensive Ag NPS
		partial body	problems per 2011
		contact	Inventory
Cedar Run White Creek			
AUID: 040802050205-01	Total and partial body	Warmwater	Extensive streambank
	contact were not	fishery	erosion per 2011
	assessed, other uses		Inventory
	listed as fully supporting		
	by MDEQ		
Butternut Creek*			
AUID: 040802050207-01	Warmwater fishery		2008 TMDL for Dissolved
			Oxygen, Aquatic Plants
			(Macrophytes), and
			Sedimentation/Siltation
Scott Drain			
AUID: 040802050208-01	Total and partial body	Warmwater	Extensive streambank
	contact were not	fishery	erosion per 2011
	assessed, other uses		Inventory
	listed as fully supporting		
	by MDEQ		
Moore Drain*			
AUID: 040802050209-03	Other indigenous		Direct habitat alterations,
	aquatic life and wildlife		Other flow regime
			alterations

Table 8.2 Impaired, partially impaired, and/or threatened uses (EPA, A.3)

Water quality criteria (EPA, A.2)

The water quality criteria used to evaluate the environmental health of water bodies in the Middle Cass River are defined below.

Sediment

Total Suspended Solids (TSS) - Rule 50 of the Michigan Water Quality Standards (Part 4 of Act 451) states that waters of the state shall not have any of the following unnatural physical properties in quantities which are or may become injurious to any designated use: turbidity,

color, oil films, floating solids, foam, settleable solids, suspended solids, and deposits. This kind of rule, which does not establish a numeric level, is known as a "narrative standard." Most people consider water with a TSS concentration less than 20 mg/l to be clear. Water with TSS levels between 40 and 80 mg/l tends to appear cloudy, while water with concentrations over 150 mg/l usually appears dirty. The nature of the particles that comprise the suspended solids may cause these numbers to vary.

Dissolved Oxygen

Rule 64 of the Michigan Water Quality Standards (Part 4 of Act 451) includes minimum concentrations of dissolved oxygen which must be met in surface waters of the state. This rule states that surface waters designated for warmwater fish and aquatic life must meet a minimum dissolved oxygen standard of 5 mg/l.

Table 8.3 summarizes the causes and sources for the designated uses in each of the Middle Cass River subwatershed. The status of each designated use presented in Table 8.2 are correlated with the causes and sources of impairments for each sub-watershed in Table 8.3.

Sub- watershed name	Impaired Use Description (Suspected Use Impairment)	Cause Name	Source (s)
Butternut Creek-White Creek	Warm Water Fishery	Aquatic Plants (Macrophytes) Dissolved Oxygen	 Agriculture Streambank erosion (threat)
Moore Drain- White Creek	Other Indigenous Aquatic Life and Wildlife	Direct Habitat Alterations Other flow regime alterations	 Channelization Unknown Sources
Clark Drain	THREAT: Total and partial body contact	E. Coli (suspected)	1. Agriculture (known)
Cedar Run White Creek	THREAT: Warm Water Fishery	Sediment (suspected)	1. Streambank erosion (known)
Scott Drain	THREAT: Warm Water Fishery	Sediment (suspected)	1. Streambank erosion (known)

Table 8.3 Specific causes and sources of impairments and/or threats (EPA, A.4)

Causes of impairment (or threats) quantified (EPA, A.5)

The causes of threats to water quality and known impairments are quantified by the percentage of agricultural land cover, ditching, water quality data for DO, and known

streambank erosion sites. Causes were quantified through data presented in the 2008 TMDL for the Cass River, Tuscola County, and analysis of hydrology and land use cover in a GIS.

<u>Agriculture</u>

Butternut White Creek (known) subwatershed is 47% agricultural land use/land cover and contains over 19 miles of designated drain. The 2011 inventory information was not comprehensive for this stretch though a large amount of streambank erosion was identified in the 2008 streambank inventory. All known sites are shown in Figure 8.3.

Clark Drain (suspected) subwatershed is 81% agricultural land use/land cover and contains over 58 miles of designated drains. A number of agricultural nonpoint source (nps) sites were mapped during the 2011 inventory and are included in this chapter. All known sites are shown in Figure 8.7

Channelization

Moore Drain – White Creek subwatershed contains 37% agricultural land use/land cover. A number of agricultural nps sites were mapped during the 2011 inventory and are included in this chapter in Figure 8.4.

Dissolved Oxygen

Monitoring for Cass River, Butternut Creek, in the summer of 2001 showed nonattainment of the DO warmwater water quality standard during dry weather periods. "The cause of the impairment is abundant plant growth within the TMDL reach due to organic enrichment from agricultural NPS within the watershed" as was stated in the 2008 TMDL for the Cass River, Tuscola County. These sites are identified in Figure 8.3.

Streambank Erosion

Cedar Run and Scott Drain are both listed as threatened due to suspected sediment pollution from streambank erosion. 2008 streambank erosion inventory site data is presented later in this chapter in Map 8.5 and Map 8.6.

Locations of Impairments (EPA, A.6-8)

Figure 8.2 shows the known locations of impairment sources from the 2008 streambank inventory and 2011 in-stream and windshield surveys (Chapter 3).

Streambank erosion sites were identified during the 2008 field season by the U.S. Fish and Wildlife Service. Each site was scored on a set of criteria including the size of the eroding streambank, the soil type, buffer type, and if the erosion was increasing or stabilizing. High priority sites are those that ranked the highest for instability and pollution sources.

Priority livestock sites were those identified during the 2011 windshield surveys. High priority sites are those where a known surface water impairment was observed and pollutant loading estimates could be calculated. Medium priority sites are those where a surface water quality impairment is suspected and pollutant loading estimates can be calculated. Low priority sites

are those where a surface water quality impairment is suspected but pollutant loading estimates could not be calculated due to lack of adequate site details.

The 2011 In-stream survey results are those sites identified while conservation district staff were wading stretches of impaired waterways. Impairment locations were delineated by sources. Sources identified in the Upper Cass River include gully erosion, livestock access, stream crossing (eroding), streambank erosion, tile outlets, urban nps (urban nonpoint source or stormwater runoff), and ag nps (agricultural nonpoint source or field runoff).

Ag NPS priorities were those identified during the 2011 in-stream survey when conservation district staff identified priority areas to reduce field runoff. These locations are important to target for BMP's because a known impairment was observed. Ag NPS priority sites include field runoff, manure spreading, or inadequate buffer strips.

During the windshield survey, agricultural sites were classified by the practices that were installed on each site. Fields that were listed as having conventional tillage and 25% or less field residue are highlighted to aide in targeting of outreach programs for conservation tillage, grassed buffers, and cover crops.

Table 8.3 further summarizes information shown in Figure 8.2 by subwatershed and recommended management measures.

Figure 8.2 All Impairment Locations, Middle Cass River

8.3 Implementation Priorities and Schedule

The inventories conducted in 2008 and 2011 were reviewed and prioritized by a technical committee for the Middle Cass River watershed. Representatives present at the meeting included the Tuscola County Commission, Tuscola Conservation District, Michigan Agriculture Environmental Assurance Program, Spicer Group, MDEQ, and UM-Flint. Sources and locations were prioritized based upon the data collected during the 2008 and 2011 field inventory. The highest priority sites are those where there is a known impairment and source, and pollutant loading estimates can be calculated. Lower priority sites are those where an opportunity has been identified to install practices that can reduce and/or prevent water quality impairments. A summary of the priorities is shown in Table 8.4.

Priority	Sub-shed	Management Measure	Technical Assistance Type	Quantity	Schedule
1	Butternut Creek	Streambank Erosion Stabilization	Engineering and construction for grading, stabilization structures, and vegetation	4,675 linear feet; 21 sites	2014- 2016
1	Moore Drain	Streambank Erosion Stabilization	Engineering and construction for grading, stabilization structures, and vegetation	2,620 linear feet; 21 sites	2014- 2016
1	Cedar Run	Streambank Erosion Stabilization	Engineering and construction for grading, stabilization structures, and vegetation	6,045 linear feet; 44 sites	2014- 2016
1	Scott Drain	Streambank Erosion Stabilization	Engineering and construction for grading, stabilization structures, and vegetation	3,265 linear feet; 27 sites	2014- 2016
2	Clark Drain	Manage feedlot runoff, exclusionary fencing, alternate watering facilities	landowner assistance for livestock management plans	862 Animals, 5 sites	2017
3	Moore Drain	Gully erosion stabilization	engineering and construction	3 gullies	2017
4	Moore Drain	Conservation tillage and cover cropping	landowner outreach and assistance with funding for practices to be installed	430 Acres; 7 sites	2018- 2020
4	Clark Drain	Conservation tillage and cover cropping	landowner outreach and assistance with funding for practices to be installed	1,340 Acres; 105 sites	2018- 2020

Table 8.4 Middle Cass River Implementation Priorities

8.4 Priority Source Loadings

Sources of pollutant loadings are discussed by priority: streambank erosion, livestock access, gully erosion, and agricultural nonpoint source pollution.

Priority 1: Streambank erosion

Inventory

Streambank erosion was identified as a priority for the Middle Cass River to support the further development of the Cass River water trail and to reduce sedimentation occurring in the river. Streambank stabilization can also improve habitat for benthic macroinvertebrates, particularly in the Moore Drain and Butternut Creek where there are known impairments.

Butternut Creek has a total of 21 sites identified for Streambank stabilization as shown in Table 8.5, totaling 4,675 linear feet. Pollutant loading calculations estimate these sites are contributing a total of 11,247 tons of sediment. It is assumed that streambank stabilization of moderate and severe sites will reduce pollutant loading by 100%. Sites that are rated as minor are not included in the pollutant reduction estimates.

Moore Drain has a total of 21 sites identified for Streambank stabilization, shown in Table 8.6, totaling 2,620 linear feet. Pollutant loading calculations estimate these sites are contributing a total of 2,466 tons of sediment annually. Loading reduction estimates for moderate and severe sites are estimated to be 100% when streambanks are properly stabilized. Sites rated as minor are not included in the pollutant reduction estimates.

Cedar Run has a total of 44 sites identified for Streambank stabilization, shown in Table 8.7, totaling 6,045 linear feet. Pollutant loading calculations estimate these sites are contributing a total of 19,481 tons of sediment annually. Moderate and severe rates sites are slated for remediation and included in the pollutant loading reduction estimates.

Scott Drain has a total of 27 sites identified for Streambank stabilization, shown in Table 8.8, totaling 3,265 linear feet. Pollutant loading calculations estimate these sites are contributing a total of 4,353 tons of sediment annually. Loading reduction estimates for sites rated as moderate or severe are presumed to be 100%. Sites rated as minor are not included in the pollutant loading reduction estimates.

Loading Estimate Methodology

The loading reduction target for all streambank erosion sites is 100% assuming that the bank is stabilized to mitigate future erosion from occurring. For the loading calculations an identical calculation methods described for gully erosion sites; the soils in this area are well represented by a factor of 110 lbs/ft³, when this is divided by 2000 lbs/Ton the conversion factor of 0.055 Tons/ft³ is obtained.

Summary Tables & Maps

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes &Comments	Rating Chart	Sediment Load (Tons)	Est Load – Phosphorou s (lbs)	Est Load – Nitrogen (lbs)
57	2	25	450	2:1	Bank Eroding, Toe Unstable, Roots exposed, runoff in areas or animal path	Minor	1,750	1,925	3,850
716	2	10	120	1:1	Undercutting, Homes above. Sediment slumping in areas. Roots exposed.	Minor	150	165	330
63	3	40	600	1:1	Bank Eroding, Toe Stable, Seepage, trees slanting in, trees down, some areas more stable than others	Minor	4,500	4,950	9,900
64	2	25	120	1:1	Bank Eroding, Toe Stable, Illicit discharge, Tiles, Seepage, human activity homes above on bank	Minor	375	412.5	825
66	2.5	125	45	1:1	Bank Eroding, Toe Unstable, Undercutting, high water, roots exposed, some trees leaning in	Minor	878	966	1,933
67	3	15	100	2:1	Bank Eroding, Toe Stable, Undercutting, slight bend in river. Possible seepage-no visual sediment slumped, starting to restabilize w/veg	Minor	281	309	618
68	1	8	40	1:1	Bank Eroding, Toe Unstable, Undercutting, deflection, high water, roots exposed	Minor	20	22	44

Table 8.5: Butternut Creek impairments from Streambank erosion

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes &Comments	Rating Chart	Sediment Load (Tons)	Est Load – Phosphorou s (lbs)	Est Load – Nitrogen (lbs)
72	3	8	55	1:1	Toe Stable, River Bend, human refuse (bricks) roots exposed	Minor	82.5	90.8	181.5
73	1.5	10	1000	1:1	Bank Eroding, Toe Stable, River Bend, Seepage, Possible deflection. Road above, Sediment slumped. Toe re-vegetating in some areas	Minor	937	1,031	2,062
59	2	6	500	1:1	Bank Eroding, Toe Unstable, Undercutting, River Bend, Sediment slumped in areas, trees leaning in	Moderate	375	412	825
61	2	5	130	1:1	Bank Eroding, Toe Unstable, Undercutting,high water, Roots exposed, some veg re-growing on toe	Moderate	81.3	89.4	178.8
62	2	3	300	1:1	Bank Eroding, Toe Unstable, Undercutting,high water, roots exposed, beg to veg and stabilize in some areas only	Moderate	112.5	123.8	247.5
65	1	12	35	1:1	Toe Stable, River Bend, Seepage, sediment slump w/veg	Moderate	26.25	28.9	57.8
719	2.5	NR	NR	NR	Undercutting has potential to increase	Moderate	No data	No data	No data
69	1-1.5	6	90	1:1	Bank Eroding, Toe Unstable, Undercutting, River Bend, high water, roots exposed	Moderate	59.06	65	129.9
720	NR	NR	NR	NR	Undercutting, potential 3-DOT	Moderate	No data	No data	No data
70	1.5	8	250	1:1	Undercutting, high water, roots	Moderate	187.5	206.3	412.5

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes &Comments	Rating Chart	Sediment Load (Tons)	Est Load – Phosphorou s (lbs)	Est Load – Nitrogen (lbs)
					exposed				
71	2	5	40	1:1	Bank Eroding, Toe Unstable, Undercutting, high water?, roots exposed	Moderate	25	27.5	55
56		35	800	2:1	Toe Unstable, Undercutting, Roots exposed, some stable areas, slumping in some areas	Severe	1,750	1,925	3,850
715	NR	NR	NR	NR	Agricultural Runoff, Illicit discharge, Tiles, Big dredged site. Field behind. 2 drainage tiles and a water pump	Severe	No data	No data	No data
60	NR	NR	NR	NR	Illicit discharge, Drainage	Severe	No data	No data	No data

Figure 8.3 Butternut Creek Impairments

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
100	NR	NR	NR	NR	just past bridge; potential access site; 1-2 parking; Caine Rd; (ID 100 used to enter database); (decreasing trend and minor used to enter database)	Minor	No data	No data	No data
101	NR	NR	NR	NR	Erosion during storm waters; beginning to re-stabilize	Minor	No data	No data	No data
756	1.5	25	120	2:1	Bank Eroding, Toe Stable, River Bend, Sediment Dropped	Minor	281.3	309.4	618.8
757	3.5	7	150	2:1	Bank Eroding, Toe Unstable, Undercutting, Sediment Dropped, high water, illicit water pump at this location	Minor	229.7	252.7	505.3
841	2	6-7	40	1:1	Bank Eroding, River Bend, toe stabilizing; natural run-off; beginning of riverbend	Minor	32.50	35.8	71.5
842	2	5-10	200	1:1	Bank Eroding, Sediment Dropped, high water toe stabilizing; slope increases	Minor	187.5	206.3	412.5
844	1.5	12	35	2:1	Bank Eroding, Toe Unstable, Trampled, Undercutting, Foot Traffic, Residence, rope swing; observation water up higher; aquatic vegetation submerged due to high water	Minor	39.4	43.3	86.6

Table 8.6 Moore Drain impairments from Streambank erosion

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
847	2	4-5	60	1:1	Bank Eroding, Toe Unstable, Undercutting, River Bend, high water	Minor	33.8	37.1	74.3
848	1.5	5	40	1:1	Bank Eroding, Toe Unstable, Sediment Dropped, high water, left bank 65ft	Minor	18.8	20.6	41.3
849	1.5	10	90	1:1	Bank Eroding, Toe Unstable, Trampled, Foot Traffic, Sediment Dropped, high water	Minor	84.4	92.8	185.6
850	2	5	30	2:1	Bank Eroding, River Bend, Sediment Dropped, high water; big river bend, toe stabilizing	Minor	18.8	20.6	41.3
852	1.5	4	80	2:1	Bank Eroding, River Bend, Sediment Dropped, high water, toe stabilizing	Minor	30	33	66
854	NR	3	35	3:1	Bank Eroding, Toe Unstable, Agricultural Runoff, 2 Drains; Partially Rocked	Minor	6.6	7.2	14.4
758	1.5	10	65	1:1	Bank Eroding, Toe Stable, Undercutting, Sediment Dropped, high water	Moderate	60.9	67.0	134.1
839	2	5-7	140	1:1	Bank Eroding, Toe Unstable, Undercutting, Sediment Dropped, Seepage, high water, toe stabilizing in some areas	Moderate	105.0	115.5	231.0

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
845	2	7	200	1:1	Obstruction, high water; water diverted around vegetation bed in front, natural run-off; roots exposed	Moderate	175.0	192.5	385.0
846	1.5	5	275	1:1	Bank Eroding, Toe Unstable, River Bend, high water foot path above bank	Moderate	128.9	141.8	283.6
853	2	4	300	1:1	Bank Eroding, Toe Unstable, Undercutting, Sediment Dropped, high water, toe stabilizing in some areas	Moderate	150	165	330
840	1	5-25	400	1:1	Bank Eroding, Toe Unstable, Undercutting River Bend, Sediment Dropped, Seepage, high water, toe stabilizing in some areas; slope increases	Severe	425	467	935
843	1	12	300	1:1	Bank Eroding, Toe Unstable, Undercutting, River Bend, Sediment Dropped, Seepage, high water; river bend is slight, roots exposed; trees leaning in; toe stabilizing in some areas	Severe	225	247	495
851	2.5	25	60	2:1	Bank Eroding, Toe Unstable, Trampled, Foot Traffic, natural runoff; private access site; residence/camp above bank; wood stains put into bank	Severe	234	257	515

Figure 8.4 Moore Drain Impairments

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes, & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
714	1	8	120	1:1	Bank Eroding, deflection upstream, vegetated bed sticking out, Potential to increase (3-DOT)	Minor	60	66	132
17	1	15	120	2:1	Trampled, Undercutting, toe not stable due to foot traffic	Minor	112.5	123.8	247.5
20	1.5	20	50	2:1	Bank Eroding, Toe Stable, Seepage	Minor	93.8	103.1	206.3
21	1	25	40	1:1	road nearby above? River Rd.	Minor	62.5	68.8	137.5
25	2.5	8	40	1:1	Toe Unstable, Deflection/sediment/bank slump, Change in river width redirects water flow against bank	Minor	50	55	110
31	1.5	15	40	1:1	Bank Eroding, Undercutting, River Bend, sediment slump, vegetated bank above	Minor	56.3	61.9	123.8
33	2	25	120	1:1	Bank Eroding, Toe Stable, sediment slumping	Minor	375	412.5	825
36	2	50	60	2:1	Bank Eroding, Toe Stable, grass on bank now. Possible storm damage.	Minor	375	412.5	825
37	3	40	120	2:1	Bank Eroding, Toe Stable, River Bend	Minor	900	990	1980
38	1.5	40	60	1:1	Bank Eroding, Toe Stable, Seepage, lots of small trees and grass on toe	Minor	225	247.5	495
42	3	40	800	2:1	Bank Eroding, Seepage, Trees beginning to fall forward into	Minor	6,000	6,600	13,200

Table 8.7 Cedar Run impairments from Streambank erosion

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes, & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
					river				
43	2.5	10	200	1:1	Bank Eroding, Toe Unstable, Foot Traffic, Seepage	Minor	312.5	343.8	687.5
47	2.5	5	40	1:1	Undercutting, some minor sediment slump tree leaning, old trees fell in, roots exposed	Minor	31.25	34.4	68.8
49	2	20	150	1:1	Bank Eroding, Toe Stable, River Bend, Seepage, sediment fell in	Minor	375	412.5	825.0
709	1.5	8	10	2:1	Bank Eroding, Toe Stable, Seepage	Minor	7.5	8.3	16.5
711	1.5	8	10	2:1	Bank Eroding, Agricultural Runoff, drainage	Minor	7.5	8.3	16.5
712	1.5	8	35	1:1	Undercutting, Sediment Dropped, Potential to increase (3dot)	Minor	26.3	28.9	57.8
52	1.5	8	60	2:1	Toe Unstable, water flow faster from rapids just upstream, Roots exposed. Eroding on both banks	Minor	45	49.5	99.0
53	2.5	10	75	1:1	Bank Eroding, Toe Stable, Sediment slump, Deflection, exposed roots, veg re-growing	Minor	117.2	128.9	257.8
54	3	12	40	2:1	Bank Eroding, River Bend, Deflection, pooling water, Sediment slumped, beginning to re-vegetate	Minor	90	99	198
16	2	NR	NR	NR	Agricultural Runoff, nutrient loading	Moderate	No data	No data	No data
18	2	NR	NR	NR	Agricultural Runoff, veg cover	Moderate	No data	No data	No data

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes, & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
19	3	10	55	1:1	Bank Eroding, Undercutting, Seepage, because water diverted due to 80% veg cover island water flow up causing undercutting on opposite bank, Logjam	Moderate	103.1	113.4	226.9
22	1	35	400	2:1	Bank Eroding, Undercutting, Human impact	Moderate	875	962.5	1925
23	1	40	100	1:1	Toe Unstable, Undercutting, Foot Traffic, River Bend, Seepage, some kind of pump sticking straight out into the middle of the river, large rocks	Moderate	250	275	550
26	1.5	35	40' and continues to 300' w/ some veg stabilized bank	1:1	sediment slump, Toe beginning to stabilize. Not much sunlight for vegetative growth.	Moderate	131.3	144.4	288.8
27	2	15-20	60	1:1	Undercutting, high water	Moderate	131.3	144.4	288.8
32	1	40-50	450-500	1:1	Bank Eroding, Toe Stable, River Bend, Seepage, large sediment slump, Toe stabilized with natural cobble an veg, some bank stabilization by veg patchy	Moderate	1,335.9	1,469.5	2,939.1

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes, & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
34	1.5-2	20	110	1:1	Bank Eroding, winter damage not much vegetation on bank due to shade cover	Moderate	240.6	264.7	529.4
35	1.5	45-50	120	1:1	Bank Eroding, River Bend,s ediment fell in large area several trees down. Possible human activity (trash site) above bank	Moderate	534.4	587.8	1,175.6
39	1.5	7	75	1:1	Undercutting, Seepage	Moderate	49.2	54.1	108.3
41	3	20	20	2:1	Bank Stable, Undercutting, site of old water pump litter that eroded small area in bank drainage	Moderate	75	82.5	165
44	1.5	8	200	1:1	Bank Eroding, Toe Unstable, Undercutting, Trees falling in, sediment slumping	Moderate	150	165	330
45	2	20	335	2:1	Bank Eroding, Toe Unstable, River Bend River Bend, Road above, Trees & sediment falling in road above on top of bank. Cut-bank	Moderate	837.5	921.3	1,842.5
46	1	8	110	1:1	Bank Eroding, Toe Unstable, Undercutting, 300 ft downstream from rapid/riffle, past river bend old trees fell in	Moderate	55	60.5	121.0
48	1	5	340	1:1	Bank Eroding, Toe Unstable, Undercutting, Seepage, high water, trees slanting in	Moderate	106.3	116.9	233.8

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes, & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
55	1	8	120	1:1	Bank Eroding, Toe Unstable, Deflection upstream, vegetated bed sticking out, Roots exposed	Moderate	60	66	132
713	3	12	40	2:1	Bank Eroding, River Bend, Obstruction, Deflection, pooling water, Sediment island (pt. bar?) 80% covering/island	Moderate	90	99	198
28	2	30	110	1:1	Bank Eroding, Undercutting, River Bend, Seepage, Some veg cover to stabilize bank patchy	Severe	412.5	453.8	907.5
29	1	8	800		Bank Eroding, Toe Unstable, Undercutting River Bend, Seepage, Sediment fell in Bank undercutting and eroding . 3-5 ft of stabilized toe w/vegetation.	Severe	400	440	880
30	<1	45	300	1:1	Bank Eroding, Undercutting, high water	Severe	843.8	928.1	1856.3
40	2	30	140-400	1:1	Bank Eroding, Toe Unstable, Undercutting, People living above on bank, Sediment slumped. Cedar tree recently fell in water	Severe	1,012.5	1,113.8	2,227.5
50	2	30	500	1:1	Bank Eroding, Toe Stable, Undercutting, high water, Sediment slump, roots exposed	Severe	1,875	2,062.5	4,125
51	1.5	35	180	2:1	Bank Eroding, Toe Unstable, Undercutting, River Bend, water flow	Severe	590.63	649.7	1,299.4

SAGINAW Cedar Run, White Creek: 0402050205 Middle Cass River Watershed: Overview of Known Impairments Imer Colwood BAY Saginaw Bay 🔊 GENESEE 15 57 Ellington TUSCOLA Middle Cass River 040802050205 Twp HURON USCOLA LAPEER 52 53 713 54 51 SANILAC 49 50 772 43 45 43 43 45 43 8 M 39 38 Creen 37 dna 040802050203 36 35 34 88 uny Jepa 29 28 27 709 25 0408020 Dodge 23 Legend 0 0.25 0.5 Severity Rating Livestock Sites 2008 Streambank Erosion Priority SOURCES 0 0 0 0 County 0 Conventional Tillage and < 25%</p> 0 0 • Middle Cass River 0408020502 Ag NPS
 Gully Erosion Severe Tile Outlet High - Water Moderate Minor Phragmites Low Medium Road Sedimentation Township Tuckey Elkland 22 Twp 20 21 1.5 2 ■ Miles 8 Doeil 8

Figure 8.5 Cedar Run Impairments

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
74	2-2.5	NR	NR	NR	Bank Eroding, Toe Stable, River Bend, seepage possible but not visible, part of bank re vegetating	Minor	No Data	No Data	No Data
737	2	8	30	1:1	Bank Eroding, Toe Unstable, Undercutting, Foot Traffic, Sediment Dropped, Left bank 25 ft. Right Bank 150 ft, logs, dead trees in water; roots exposed	Minor	30	33	66
738	1.5	5	85	2:1	Bank Eroding, Toe Stable, River Bend,high water	Minor	39.8	43.8	87.7
740	1	5	125	1:1	Bank Eroding, Toe Unstable, River Bend, Sediment Dropped, high water	Minor	39	43	85.9
741	1.5	6	50	1:1	Bank Eroding, Toe Unstable, Undercutting, high water-residence above bank	Minor	28.1	30.9	61.9
742	1	8-10	60	1:1	Bank Eroding, Toe Stable, Sediment Dropped, high water, animal traffic	Minor	33.8	37.1	74.3
746	1	20	85	1:1	Bank Eroding, Toe Stable, river bend just before residence/prison areas above bank. Human dumping of vegetation removal on top bank	Minor	106.3	116.9	233.8
750	2	8	50	1:1	Bank Eroding, Toe Unstable, Undercutting, River Bend, deflection/pool; high water, roots exposed	Minor	50	55	110

Table 8.8 Scott Drain impacts from Streambank erosion

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
752	2	20	70	1:1	Bank Eroding, Toe Unstable, Obstruction, Sediment Dropped, vegetation deflecting water around/high water, some patchy areas of toe are more stable w/vegetation	Minor	175	192.5	385
754	1	8	40	1:1	Bank Eroding, Toe Unstable, Sediment Dropped, high water	Minor	20	22	44
782	1	3	60	1:1	Bank Eroding, Toe Stable, Undercutting, high water, roots exposed	Minor	11.3	12.4	24.8
784	1	3	80	1:1	Undercutting, roots exposed	Minor	15	16.5	33
785	1	5	60	2:1	Bank Eroding, Toe Unstable, Trampled, Illicit discharge, Tiles, Foot Traffic, high water residence; private property; mowed to edge; trees falling in; dead tree debris on bank	Minor	18.8	20.6	41.3
739	1	12	30	NR	Bank Eroding, Toe Unstable, River Bend, roots exposed	Moderate	22.5	24.8	49.5
744	1.5	8	140	1:1	Bank Eroding, Toe Unstable, Sediment Dropped, deflection, drainage (cemented)	Moderate	105	115.5	231
747	3	12	40	1:1	Bank Eroding, Toe Unstable, Undercutting River Bend, Sediment Dropped, old cement structure.	Moderate	90	99	198
749	2	15-20	75	1:1	Bank Eroding, Toe Unstable, Undercutting River Bend, Sediment Dropped, deflection, roots exposed	Moderate	164	180.5	360.9
751	1	20	300	2:1	Bank Eroding, Toe Unstable, Undercutting, Sediment Dropped, Seepage, high water cutting down trees on bank, attempting to	Moderate	375	412.5	825

Site ID	Average Depth (ft)	Height (ft)	Length (ft)	Slope	Condition of Toe (bank), Impacts, Potential Causes & Comments	Rating Chart	Sediment Load (tons)	Est Load Phosphorous (Lbs)	Est Load Nitrogen (lbs)
					put in stairs, etc.				
753	1.5	5	110	1:1	Bank Eroding, Toe Unstable, Undercutting, Sediment Dropped, high water	Moderate	51.6	56.7	113.4
783	1	40	10	1:1	Bank Eroding, Toe Unstable, Trampled, foot traffic, mowed, cut down for path, residence, private property	Moderate	25	27.5	55.0
786	1	5	30	1:1	Bank Eroding, Toe Unstable, Undercutting, high water	Moderate	9.3	10.3	20.6
787	1.5	7	800- 1000	1:1	Bank Eroding, Toe Unstable, Undercutting, Sediment Dropped, high water, This portion cannot be traveled from the upstream portion due to dangerous dam portage and no access at dam.	Moderate	590.6	649.7	1,299.4
788	1.5	10	1000	1:1	Bank Eroding, Toe Unstable, Undercutting, Seepage, high water (dam)	Moderate	937.5	1,031.3	2,062.5
789	1	10	450	1:1	Bank Eroding, Undercutting, Sediment Dropped, high water, roots exposed	Moderate	281.3	309.4	618.8
791	1	8	60	2:1	Bank Eroding, Toe Unstable, Undercutting, Sediment Dropped, Seepage, high water	Moderate	30	33	66
792	1	10	80	1:1	Undercutting, high water, Access site, Roots exposed	Moderate	50	55	110
755	2.5	30	225	1:1	Bank Eroding, Toe Unstable, Sediment Dropped, high water	Severe	1,054.7	1160.2	2,320.3

SAGINAW puz Scott Drain: 0402050208 Middle Cass River Watershed: Overview of Known Impairments BAY 207 208 Saginaw Bay GENESEE 4080205020 ی Osk **TUSCOLA** 040802050208 Juniata Middle Cass River 840 839 HURON LAPEER SC 756 758 757 иерџац 945 SANILAC 754 755 Kile 753 752 **BilivnoinU** 751 (DUBH unquseM Indian Flds Twp 750 Alkerson 21 Graf 743 742 Champers eque 243 739 792 737 791 Xia7 783 787 Appletre Fremont 786 783 782 784 Legend Priority 2008 Streambank Erosion Severity Rating SOURCES Livestock Sites 0 0 0 0 0 0 auld 0.25 0.5 Π Moderate Severe Ag NPS Knoh County - Water Road Minor **Tile Outlet** Sedimentation Phragmites Gully Erosion Conventional Tillage and < 25% Low High Middle Cass River 0408020502 Medium Township 2 72 1.5 ueky N Miles **J20206**

Figure 8.6 Scott Drain Impairments

Priority 2: Livestock Access

Inventory

A total of five sites identified during the watershed inventory are impacting water quality in the Clark Drain (Table 8.9). These five sites contain 862 animals and are contributing and estimated 647 pounds of phosphorus per year, 3,951 pounds of nitrogen per year and 4,493 pounds per year of BOD. Loading reduction estimates for individual sites are presumed to be 100% when sites are properly remediated.

Loading Estimate Methodology

The Pollutant controlled calculation and documentation for Section 319 Watersheds Training Manual, June, 1999 section on Feedlot Pollution Reduction was utilized. The steps outlined in this document were developed into an Excel spreadsheet calculator. The calculation requires the determination of the average rainfall (R) per day by selecting the state and county in which the feedlot is located. The variable R is then calculated, in this case it is approximately R= 0.2848, as the watershed locations are within the same rainfall isopleths. The spreadsheet was set up so there were input areas for Slaughter Beef (feeder cattle); Dairy Cattle, Horses, Feeder Pigs (it was assumed that all pigs were feeders in the watershed), and sheep. So for Table 8.9 Clark Drain Impairments from Livestock Access, the pollutant loading calculator is set up to determine the Annual average mass load of pollutants in runoff using the following formula; the Mass load x Rain days per year x Correction Factor for number of rain days assuming the cows are "feeders" that yields approximately 548 lbs-P per year, and 2,794 lbs-N per year which could make its way to the watershed drainage system. Additionally, almost 3,667 lbs-BOD (biological oxygen demand) could be introduced into the surface water system annually from these feeder cattle on this site. A copy of the calculator is available for viewing in APPENDIX C.

Summary Table & Map

Map Label	UTM-X	UTM-Y	# animals	Acres	Туре	Priority 1=High 2 = Med. 3= Low	Estimated Annual "P" Load (lbs/yr) ¹	Estimated "N" Load (lbs/yr) ¹	Estimated BOD Load (lbs/yr) ¹	Reduction Targets (Bacteria, Phosphorous, Nitrogen)
57	4807411	333225	250	Not recorded (NR)	200 cattle 50 sheep	1	548	2,794	3,667	100%
58	4807342	332631	100	NR	sheep	1	16	189	135	100%
59	4807409	33438	200	NR	sheep	1	32	378	270	100%
68	480579	334379	12	NR	sheep	3	2	23	16	100%
56	4807435	334246	300	NR	sheep	3	49	567	405	100%

Table 8.9 Clark Drain impairments from livestock access

¹See Appendix C for excel spreadsheet model

Figure 8.7 Clark Drain, Livestock Impairments

Priority 3: Gully Erosion

Inventory

Three sites were identified in the Moore Drain (Table 8.10) as impacting water quality due to gully erosion. Pollutant loading calculations indicate these three gullies are contributing 35 tons per year of sediment, 38.5 pounds per year of phosphorus, and 77 pounds per year of Nitrogen. Loading reduction estimates for individual sites are presumed to be 100% when sites are properly remediated.

Loading Estimate Methodology

Using the *Pollutants Controlled Calculation and Documentation for Section 319 Watersheds Training Manual* (June, 1999), we are able to provide information on the nutrient aspect of sediment loading in a watershed in Table 7.7. Using the data gathered by field survey crews, the sediment loading could be estimated from the length, width and depth of the visible erosion. This would be developed, first into a volume, then a mass. From the mass and general type of soils, we used a ratio of 1.1 pounds of phosphorus per ton of sediment to obtain the pounds of phosphorus loading. For example, in Table 7.7 at Site #51, the erosion volume was estimated at 24 ft³ based on the field measurements of the gully erosion at that site. This estimate has to be converted to Tons, therefore, using the geotechnical reference manual *GeoTechnical Engineering-Principles and Practices, 1999 by D.P.Coduto* the soils in this area are well represented by a factor of 110 lbs/ft³, when this is divided by 2000 lbs/Ton the conversion factor of 0.055 Tons/ft³ is obtained. With the estimate of 24 ft³ x 0.055 T/ft³ ÷ 2 yrs = 1 Ton/Yr of sediment is produced with this calculation. Then applying the ratio of 1.1 lb-P / Ton of sediment we obtain the estimated load of 1.6 lbs-P/Yr for this particular gully erosion site.

If the site was a nonpoint source of sediment, for example a field draining towards a drain or watercourse, the spreadsheet to determine nutrient and sediment loading would be correlated with the regions of the HIT model and data columns would be added for annual erosion rates and Delivery Ratios. From this data an annual sediment load in tons could be obtained, from that mass again a simple ratio of 1.1 lbs of P per ton of sediment or 2.2 lbs of N per ton of sediment could provide the nutrient loading for that area or district. USE of the HIT model could also show how a BMP could have an effect on nutrient and sediment loading.

Summary Table & Map

Site #	¹ Erosion volume (ft ³)	Soil weight (tons/ft ³)	No. of years	Sediment Load (tons/yr)	Est. Load - Phosphorus (lbs/yr)	Est. Load - Nitrogen (Ibs/yr)	Notes
381	80	0.0625	1	5	5.5	11.0	4'Wx1'Hx20'L
383	390	0.0625	1	24	26.8	53.6	3'Wx1'Hx130'L
384	90	0.0625	1	6	6.2	12.4	3'Wx1'Hx30'L

Table 8.10 Moore Drain impairments from gully erosion

Figure 8.8 Moore Drain, Impairments from Gullies

Priority 4: Cropland Runoff

Inventory

Sites were selected that employed Conventional tilling methods and had minimal field residue, below is a summary by HUC-12 Code (Table 8.11) that were identified during the 2011 field inventory.

HUC Name	HUC-12 CODE	Total HUC-12 Acres	Known Sites	Total Acreage of known sites	Supporting Tables and Maps
Moore Drain- White Creek	40802050209	36,077	7	430	Figure 8.9 Table 8.12 Table 8.13 Table 8.14
Clark Drain- North Branch White Creek	40802050201	25,803	107	1,340	Figure 8.10 Table 8.15 Table 8.16 Table 8.17

Table 8.11 Summary of sites identified for Agricultural Best Management Practices

Inventory information verified 7 fields with a total of 430 acres in Moore Drain subwatershed and 107 fields with a total of 1,340 acres in the Clark Drain subwatershed as contributing sediment and nutrients to surface water via field runoff. Sites were prioritized by impairment and HIT Model Results and then cross-analyzed with sites inventoried in 2011 as having conventional tillage and 25% or less residue on the field. Moore Drain (Table 8.12) and Clark Drain (Table 8.14) were identified as priority areas for working with landowners for the installation of agricultural BMPs that reduce nonpoint source runoff.

Loading Estimate Methodology

The STEPL model was used to calculate the total contribution of nitrogen load in pounds per year, phosphorous load in pounds per year, biological oxygen demand in pounds per year, and sediment in tons per year by subwatershed for known acreage of problem sites. Load reduction estimates were estimated using the STEPL model assuming that cover crops and reduced tillage practices were being applied to the inventoried sites. STEPL's BMP calculator was used to estimate the combined efficiency of the two BMP's. The HIT model was used to calculate a cost comparison among three BMP types (mulch-till, no-till and 30 feet grass buffers) and the estimated sediment and phosphorous load reductions. The HIT model was used to calculate pollution reductions that would occur should the worst 5% and/or 10% total agricultural area be put into a type of conservation tillage.

Summary Tables and Maps

A series of tables and figures follows for each of the subwatersheds that were inventoried during the 2011 windshield survey. For the Moore Drain, Table 8.12 provides a list of field

identified where practices can be installed; Table 8.13 provides pollutant loads estimates, Table 8.14 provides an estimation of pollutant reduction and a cost benefit analysis, while Figure 8.9 provides locations for the sites described in Table 8.12. For the Clark Drain, Table 8.15 lists each site for potential installation of conservation tillage and cover crops and are also shown in Figure 8.10.

Labe l	UTM-Y	UTM-X	SLOPE	ACRES	TILLAGE	RESIDUE	% RESIDUE
202	4820753	310203	Flat	40	Minimum tillage	Bean	0 - 25%
203	4812272	292649	Flat	80	Conventional tillage	Corn	0 - 25%
204	4810948	291871	Moderate	30	Conventional tillage	Corn	0 - 25%
205	4810195	292613	Flat	80	Conventional tillage	Bean	0 - 25%
206	4812883	294266	Moderate	40	Conventional tillage	Bean	0 - 25%
207	4813045	295852	Hilly	80	Conventional tillage	Wheat	0 - 25%
208	4812485	295847	Flat	80	Conventional tillage	Bean	0 - 25%

Table 8.12 Moore Drain Priority Sources of Agricultural Nonpoint Source Pollution

Figure 8.9: Moore Drain, Priority Sources of Agricultural Nonpoint Source Pollution

Pollutant loading reductions were estimated for nitrogen (N), phosphorus (P), biological oxygen demand (BOD), and sediment at the site level utilizing the STEPL Model, results are shown below in Table 8.13 for the Moore Drain subwatershed.

430 Acres of Cropland	N Load (no BMP) (lb/yr)	P Load (no BMP) (lb/yr)	BOD Load (no BMP) (lb/yr)	Sediment Load (no BMP) (t/yr)
	1177.9	283.2	2434.8	133.7
	N Load (with BMP) (lb/yr)	P Load (with BMP) (lb/yr)	BOD Load (with BMP) (lb/yr)	Sediment Load (with BMP) (t/yr)
	306.0	75.8	1718.3	21.8
	% N	% P	% BOD	% Sed
	Reduction	Reduction	Reduction	Reduction
	74.0	73.2	29.4	83.7

Table 8.13 Moore Drain, Pollutant loads and reductions, STEPL Model

Table 8.14 provides a comparison on the amount of sediment and nutrient reduction cost per unit for mulch till, no-till, and 30 feet grass buffers. No-till on the worst 10% of acreage in crop production can reduce sediment by 552 tons per year. The greatest cost-benefit is estimated to occur when no-till is employed on the worst 5% of the watershed area costing \$53 per ton of sediment reduced and \$63 per pound of phosphorous reduced.

Table 8.14 Pollutant Reduction Estimates for Moore Drain

Practice	Sediment Reduction (tons/yr)	BMP cost benefit (\$/ton reduction)	Phosphorous Reduction (lbs/yr) / \$/lb-P
Mulch till on sediment for worst 5% (1,804 acres)	203	\$89	173 / \$105
Mulch till on sediment for worst 10% (3,607 acres)	237	\$152	201 / \$179
No Till on sediment for worst 5% (1,804 acres)	475	\$53	404 / \$63
No Till on sediment for worst 10% (3,607 acres)	552	\$91	469 / \$108
Sediment for 30ft grass buffer	310	\$80	264 / \$94

Site #	Latitude	Longitude	Тwp	Section #	⁵ Contributing area (CA) (acres)
111	43.39265	-83.0736	Marlette	8	
112	43.39165	-83.0741	Marlette	8	
113	43.39068	-83.07551667	Marlette	8	
114	43.39005	-83.07573333	Marlette	8	
115	43.389	-83.07608333	Marlette	8	
116	43.38757	-83.07343333	Marlette	8	
117	43.38613	-83.0761	Marlette	8	
118	43.38607	-83.07846667	Marlette	8	
119	43.38805	-83.08211667	Marlette	8	
120	43.3884	-83.08511667	Marlette	8	
121	43.36415	-83.02143333	Marlette	23	
122	43.3683	-83.01285	Marlette	23	
123	43.36835	-83.01116667	Marlette	23	
125	43.36207	-83.00895	Marlette	23	
126	43.3602	-83.00958333	Marlette	23	
127	43.35992	-83.00981667	Marlette	23	
128	43.40935	-83.00521667	Marlette	1	40
129	43.40777	-83.00475	Marlette	1	40
130	43.40127	-83.0497	Marlette	4	40
131	43.40265	-83.05126667	Marlette	4	
132	43.40468	-83.05478333	Marlette	4	
133	43.41138	-83.05628333	Marlette	4	60
134	43.41412	-83.05611667	Marlette	4	60
135	43.4151	-83.05605	Marlette	4	
136	43.4122	-83.02026667	Marlette	2	30
137	43.41337	-83.0204	Marlette	2	20
138	43.41155	-83.01901667	Marlette	2	
139	43.41153	-83.01765	Marlette	2	20
140	43.41163	-83.01543333	Marlette	2	
141	43.4117	-83.0146	Marlette	2	
142	43.41142	-83.014	Marlette	2	40
143	43.4106	-83.01108333	Marlette	2	145
144	43.41063	-83.01088333	Marlette	2	25
145	43.41068	-83.0143	Marlette	2	20
146	43.40722	-83.025	Marlette	2	60
147	43.40662	-83.0182	Marlette	2	40

 Table 8.15 Clark Drain Priority Sources of Agricultural Nonpoint Source Pollution

Site #	Latitude	Longitude	Тwp	Section #	⁵ Contributing area (CA) (acres)
148	43.407	-83.01638333	Marlette	2	40
149	42.40493	-83.01581667	Marlette	2	80
150	43.40382	-83.01598333	Marlette	2	40
151	43.40242	-83.01618333	Marlette	2	40
152	43.48183	-83.058665	Lamotte	8	
175	43.37552	-83.03143333	Marlette	15	30
176	43.37548	-83.03015	Marlette	15	same
177	43.3754	-83.02871667	Marlette	15	same
178	43.37547	-83.03011667	Marlette	15	10
179	43.37533	-83.02701667	Marlette	15	15
180	43.37535	-83.02738333	Marlette	15	same
181	43.3734	-83.04546667	Marlette	15	10
182	43.37668	-83.04331667	Marlette	15	15
183	43.37772	-83.04275	Marlette	15	15
184	43.37948	-83.04363333	Marlette	15	10
185	43.3807	-83.04396667	Marlette	15	10
239	43.39425	-83.05526667	Marlette	9	same
240	43.395	-83.05663333	Marlette	9	40
241	43.40102	-83.05875	Marlette	9	
242	43.39395	-83.04655	Marlette	9	same
243	43.3977	-83.05173333	Marlette	9	same
244	43.39607	-83.0496	Marlette	9	same
245	43.39928	-83.05381667	Marlette	9	same
246	43.3978	-83.05175	Marlette	9	same
247	43.39925	-83.05596667	Marlette	9	same
248	43.39983	-83.05665	Marlette	9	120
249	43.39957	-83.05656667	Marlette	9	same
250	43.3974	-83.05663333	Marlette	9	same
251	43.39383	-83.05646667	Marlette	9	40
252	43.3915	-83.05403333	Marlette	9	
253	43.39197	-83.03805	Marlette	9	
254	43.39273	-83.0554	Marlette	9	
255	43.38883	-83.06483333	Marlette	9	
256	43.3891	-83.06383333	Marlette	9	
257	43.38953	-83.06018333	Marlette	9	
258	43.39247	-83.0603	Marlette	9	
259	43.39357	-83.06176667	Marlette	9	
260	43.40937	-83.03793333	Marlette	3	

Site #	Latitude	Longitude	Тwp	Section #	⁵ Contributing area (CA) (acres)
261	43.40977	-83.03965	Marlette	3	
262	43.40645	-83.03971667	Marlette	3	15
263	43.4108	-83.03996667	Marlette	3	
264	43.41148	-83.04006667	Marlette	3	
265	43.41263	-83.04006667	Marlette	3	30
266	43.4141	-83.0375	Marlette	3	40
267	43.40893	-83.02743333	Marlette	3	
279	43.36518	-83.02938333	Marlette	22	
280	43.36333	-83.03563333	Marlette	22	
281	43.36507	-83.0365	Marlette	22	
282	43.36332	-83.039	Marlette	22	
283	43.36602	-83.03081667	Marlette	22	
284	43.36338	-83.0369	Marlette	22	
285	43.36352	-83.03506667	Marlette	22	
286	43.369	-83.03185	Marlette	22	
287	43.36872	-83.03978333	Marlette	22	
294	43.37203	-83.05281667	Lamotte	16	
295	43.3791	-83.05776667	Lamotte	16	20
296	43.38272	-83.05766667	Lamotte	16	20
297	43.37343	-83.05481667	Lamotte	16	20
298	43.37547	-83.05595	Lamotte	16	
299	43.37973	-83.05783333	Lamotte	16	
300	43.38458	-83.05438333	Lamotte	16	
301	43.38187	-83.0578	Lamotte	16	
302	43.38457	-83.05133333	Lamotte	16	
313	43.39445	-83.02648333	Lamotte	11	40
314	43.39445	-83.02253333	Lamotte	11	
315	43.4002	-83.01611667	Lamotte	11	
316	43.39902	-83.01621667	Lamotte	11	
317	43.39902	-83.01621667	Lamotte	11	
320	43.39492	-83.05405	Lamotte	11	

Figure 8.10 Clark Drain Priority Sources of Agricultural Nonpoint Source Pollution

Pollutant loading reductions were estimated for nitrogen (N), phosphorus (P), biological oxygen demand (BOD), and sediment at the site level utilizing the STEPL model, results are shown below in Table 8.16 for the Clark Drain subwatershed.

1,340 Acres of Cropland	N Load (no BMP) (lb/yr)	P Load (no BMP) (lb/yr)	BOD Load (no BMP) (lb/yr)	Sediment Load (no BMP) (t/yr)
	5212.0	1156.5	10818.1	458.9
	N Load (with BMP) (lb/yr)	P Load (with BMP) (lb/yr)	BOD Load (with BMP) (lb/yr)	Sediment Load (with BMP) (t/yr)
	1418.6	336.3	8359.8	74.8
	% N	% P	% BOD	% Sed
	Reduction	Reduction	Reduction	Reduction
	72.8	70.9	22.7	83.7

Table 8.16 Clark Drain, Pollutant loads and reductions, STEPL Model

Table 8.17 provides a comparison on the amount of sediment and nutrient reduction cost per unit for mulch till, no till, and 30 feet grass buffers for the Clark Drain. No Till on the worst 10% of acreage in crop production can reduce sediment by 674 tons per year. The greatest costbenefit is estimated to occur when no-till is employed on the worst 5% of the watershed area costing \$34 per ton of sediment reduced and \$40 per pound of phosphorous reduced.

Practice	Sediment	BMP cost benefit	Phosphorous
	Reduction (tons/yr)	(\$/ton reduction)	Reduction (lbs/yr) / \$/lb-P
Mulch till on sediment for worst 5% (1,290 acres)	226	\$57	192 / \$67
Mulch till on sediment for worst 10% (2,580 acres)	289	\$89	246 / \$105
No-till on sediment for worst 5% (1,290 acres)	527	\$34	448 / \$40
No-till on sediment for worst 10% (2,580 acres)	674	\$54	573 / \$63
Sediment for 30ft grass buffer	665	\$98	565 /\$116

Table 8.17 Pollutant Reduction Estimates for Clark Drain

8.5 Estimate of the load reductions expected from the proposed management measures (EPA Element B)

A discussion on the methods used to calculate pollutant loading estimates is covered in Chapter 6 Upper Cass River, and follows the same methods used for the Middle Cass River.

Load reductions needed to address each impairment and threat (EPA, B.1)

Priority sites are identified in waterways listed as impaired by the MDEQ (Butternut Creek and Moore Drain). Load reductions will be achieved by remediating streambank erosion sites, livestock access sites, gully erosion sites, and agricultural runoff. Loading reductions for streambank erosion and livestock access are only estimated for high and medium priority sites. Loading reductions are calculated at 100% for gully erosion and for 5% acreage targets for cropland runoff (Table 8.18).

Impairment Source	Loading Estimate for total sites	Loading Reduction	Loading Reduction %
Streambank Erosion	Sediment (tons/yr) = 11,590 + 2,466 + 19,481 + 4,353 = 37,890	Sediment (tons/yr) = 2,616 + 1,503 + 10,248 + 3,786 = 18,153	100% for sites rated severe-moderate 47.9% of total sites (Minor sites are not included in reduction estimates)
Livestock Access	647 lbs/yr P, 3,951 lbs/yr N, 4,493 t/yr BOD	Dependent on practice – see tables 8.18-8.20	Variable depending on practice installed
Gully Erosion	Sediment (tons/yr) = 35; 38.5 lbs P; 77 lbs N	Sediment (tons/yr) = 35; 38.5 lbs P; 77 lbs N	100%
Cropland Runoff	6,389 lb/yr N, 1,439 lbs/yr P, 13,252 lbs/yr BOD, 592 t/yr Sediment	4,665 lb/yr N, 1,027 lb/yr P, 3,174 lb/yr BOD, 496 t/yr Sediment	73% N, 72% P, 26% BOD, 83% Sediment

Table 8.18 Summary Table of Expected Load Reductions

Annual Nutrient Reduction Loads for Livestock in the watershed using BMPs the following BMPs:

- Filter Strips along water course
- Waste Management Systems
- Waste Storage

Method used for determination of these nutrient loadings was the *Pollutant Controlled Calculation and Documentation for Section 319 Watersheds Training Manual, June, 1999.* Table 8.19 shows reductions in annual loadings if vegetated filter strips are used to protect waterways. Table 8.20 shows reductions in annual loadings if waste management systems are used to on high priority sites. Table 8.21 shows reductions in annual loadings if a waste storage facility is used on high priority sites.

Location	Phosphorus (lbs/yr)	Nitrogen (lbs/yr)	BOD (lbs/yr)
Tuscola County (High Priority)	1770	ND	ND
Sanilac County (High Priority)	800	ND	ND

Table 8.19 Reductions from vegetated filter strips.

ND = A reduction constant was Not Determined in the 319 method used for this table

Table 8.20 Reductions from waste management systems

Location	Phosphorus (lbs/yr)	Nitrogen (lbs/yr)	BOD (lbs/yr)
Tuscola County (High Priority)	1,875	8,480	ND
Sanilac County (High Priority)	850	4,600	ND

ND = A reduction constant was Not Determined in the 319 method used for this table

Table 8.21 Reductions from waste storage facilities

Location	Phosphorus (lbs/yr)	Nitrogen (lbs/yr)	BOD (lbs/yr)
Tuscola County (High Priority)	1,250	6,890	ND
Sanilac County (High Priority)	565	3,740	ND

ND = A reduction constant was Not Determined in the 319 method used for this table

8.6 Description of the management measures needed to achieve the proposed load reductions (EPA Element C)

Goals for the Middle Cass River Watershed (EPA, C1)

- 1. Restore warmwater fishery designated use for Butternut Creek
- 2. Restore other indigenous aquatic life and wildlife use for Moore Drain
- 3. Prevent further degradation of fishery in Scott Drain and Cedar Run White Creek from streambank erosion
- 4. Restore and protect forested riparian buffer

Management Measures are Applicable & Feasible (EPA, C2-3)

Streambank Erosion can be addressed through a variety of means. These include installation of vegetative buffers to slow overland runoff and stabilization of the bank itself using natural materials such as logs or brush mattresses to hard armoring options such as gabion baskets or rip rap in extreme erosion cases.

Livestock Access: Livestock can be restricted to accessing surface water by installation of fencing along river corridors, and installation of alternate watering facilities. Manure stacking facilities may also need to be installed to prevent surface runoff into local waterways.

Gully Erosion can be addressed through stabilization practices including installation of vegetative buffers, swales or contour farming practices, or drop structures.

Agricultural NPS is a broad category that includes the following causes of impairments: Cropland erosion/runoff, Conventional Tillage, Surface ditching, Manure spreading. These can be addressed through a combination of **Agricultural BMP's**:

- Conservation tillage / Mulch-till
- Grassed Buffers
- Cover cropping

Stormwater management: A suite of management measures are available to reduce pollution and impacts to water quality in the Middle Cass River. Management measures are listed by priority for Caro, Mayville and Vassar. Chapter 4 details the urban stormwater analysis and appropriate management measures for the three urbanized areas in the Middle Cass River that were inventoried as a part of the urban hydrologic assessment, detailed in Chapter 4. There are structural recommendations to keep runoff on-site and managerial recommendations for planning commissions to enact to reduce stormwater runoff.

Recommended Managerial Strategies

Point of sale septic system ordinance: Bacteria pollution is a pervasive problem in Michigan and the Cass River Watershed. Michigan is only one of two states in the union that do not have a statewide ordinance relating to the inspection of septic systems at the time of sale. Several counties have adopted or are working on developing time of sale ordinances for their communities. A sample ordinance from the Barry-Eaton District Health Department is included in the watershed plan for local health departments to consider for adaptation and adoption.

Low impact development: A recent study performed by the Planning and Zoning Center at Michigan State University, evaluated the use of Low Impact Development in the Cass River Watershed. Full recommendations are included in the appendix E. Stormwater management is also considered a component of low impact development and is detailed in Chapter 4.

Critical Locations for Management Measures_(EPA, C.4)

Critical locations are those that have been identified as impaired by the Michigan DEQ: Butternut Creek and Moore Drain. Additional hot-spots have been identified in Clark Drain, Cedar Run, White Creek, and Scott Drain. All locations are mapped by 12-HUC code.

Priority 1: Butternut Creek, streambank stabilization Moore Drain, streambank stabilization Cedar Run, streambank stabilization Scott Drain, streambank stabilization

Priority 2:

Clark Drain, Livestock fencing, manure stacking, and alternative water facilities

Priority 3: Moore Drain, stabilization of gully erosion sites

Priority 4: Moore Drain, implement cover cropping and conservation tillage Clark Drain, implement cover cropping and conservation tillage

Load reductions linked to management measures (EPA, C.5)

Several practices have the ability to reduce loading by nearly 100% (e.g. permanent sediment reduction by fencing livestock out of riparian areas, stabilization of streambanks, removal of gullies). See the STEPL Modeling results for reductions in sediment/nutrient reductions through installation of agricultural BMP's. The percent reduction for agricultural BMP's are demonstrated in the STEPL Model calculations. We assume practices installed for livestock exclusions, e. coli reduction, gully stabilization, tile outlet erosion, and streambank stabilization have the ability to reduce loading by at or near 100% (e.g. permanent sediment reduction by fencing livestock out of riparian areas and are calculated using the MDEQ 319 Manual.

8.7 Implementation Schedule and Assistance (EPA Elements D, F, G, H)

EPA Elements D, F, G, and H are presented below by priority subwatershed and impairment in Table 8.22.

Priority Sub- shed	MGMT Measure	Technical Assistance Type	Technical Cost	*Project Lead Partners	Quantity	Material / Installation Cost	Total Cost and Potential Funding	Regulatory Agencies
1 Butter- nut Creek	Streambank Erosion Stabilization	engineering and construction	full time technician with conservation district	*Tuscola C.D., Saginaw bay RC&D, Cass River Greenway	4,675 linear feet	est \$20 foot = \$93,500	\$116,000.00 Great Lakes Commission (GLC)	MDEQ, Soil Erosion
1 Moore Drain			(estimated at 90K for two years)	*Tuscola C.D., Saginaw bay RC&D, Cass River Greenway	2,620 linear feet	est \$20 foot = \$52,400	\$74,900.00 GLC	MDEQ, Soil Erosion
1 Cedar Run	Streambank Erosion Stabilization	engineering and construction		*Tuscola C.D., Saginaw bay RC&D, Cass River Greenway	6,045 linear feet	est \$20 foot = \$120,900	\$143,400.00 GLC	MDEQ, Soil Erosion
1 Scott Drain	Streambank Erosion Stabilization	engineering and construction		*Tuscola C.D., Saginaw bay RC&D, Cass River Greenway	3,265 linear feet	est \$20 foot = \$65,300	\$87,800.00 GLC	MDEQ, Soil Erosion

Priority Sub- shed	MGMT Measure	Technical Assistance Type	Technical Cost	*Project Lead Partners	Quantity	Material / Installation Cost	Total Cost and Potential Funding	Regulatory Agencies
2 Clark Drain	Manage feedlot runoff, exclusionary fencing, alternate watering facilities	livestock mgmt plan	support to current technician	*Tuscola C.D., MMPA, Farm Bureau	862 Animals	est \$15,000 per site * 5 sites	\$75,000.00 319, Farm Bill, USDA-NRCS	MDA, FSA, Drain Office
3 Moore Drain	Gully erosion stabilization	engineering and construction	support to current technician	*Tuscola C.D., Saginaw bay RC&D, Cass River Greenway	3 gullies	est \$5,000 per site * 3 sites	\$15,000.00 CZMP, 319, Farm Bill	MDA, Drain Office, FSA
4 Moore Drain	Conservation tillage and cover cropping	landowner outreach and assistance	support to current technician	*Tuscola C.D., Saginaw Bay RC&D, Farm Bureau	430 Acres	\$10-\$14 acre = \$4,300 to \$6,020	\$6,020.00 319, Farm Bill, USDA-NRCS	MDA, FSA
4 Clark Drain	Conservation tillage and cover cropping	landowner outreach and assistance	support to current technician	*Tuscola C.D., Saginaw Bay RC&D, Farm Bureau	1340 Acres	\$10-\$14 acre = \$13,040- \$18,760	\$18,760.00 319, Farm Bill, USDA-NRCS	MDA, FSA
Entire 10-digit HUC	Monitoring Program	Water quality monitoring and analysis	\$300 per sample including staff time, each site sampled 5 times	Cass River Greenway Committee	9 subwatersh ed sites and 4 on main channel	N/A	\$19,500 MiCorps, MDEQ, Local match	MDEQ, EPA

The public information and education plan can be found in Chapter 6 (EPA Element E). The education plan is broken to address each of the pollutant sources and causes by target audience, message, and delivery tools. The schedule for implementation and milestones are presented below in Table 8.23.

Priority	Sub-shed	Management Measure	Implementation Schedule	Interim Measurable Milestones	Evaluation Dates
1	Butternut Creek	Streambank Erosion Stabilization	2014-2016	800 feet (severe sites)	2014 - funding applied for,
1	Moore Drain	Streambank Erosion Stabilization	2014-2016	760 feet (severe sites)	2017 - milestones
1	Cedar Run	Streambank Erosion Stabilization	2014-2016	2,000 feet (severe sites)	completed
1	Scott Drain	Streambank Erosion Stabilization	2014-2016	225 feet (severe sites)	
2	Clark Drain	Manage feedlot runoff, exclusionary fencing, alternate watering facilities	2015	600 animals fenced out	2019 milestone completed
3	Moore Drain	Gully erosion stabilization	2015	3 gullies	2021 confirm gullies remediated
4	Moore Drain	Conservation tillage and cover cropping	2016-2018	200 acres	2023
4	Clark Drain	Conservation tillage and cover cropping	2016-2018	800 Acres	confirm acreage targets met
n/a	Lower Cass River	Monitoring Program	Short term (1-3 years)	Monitoring program to coincide with implementation of priority areas mentioned above	

Table 8.23 Schedule for Implementation and Milestones (EPA Element F & G)

The three short-term actions required for each management measure are similar:

- 1. Submit funding proposal (Year One)
- 2. Landowner Outreach (Year Two)
- 3. Site Design and Implementation (Year Two Year Three)
- 4. Monitoring, Re-Evaluation of WMP Status and Next Steps (Year Three Year Four)

8.8 Load Reduction Criteria (EPA Element H)

The same criteria used to determine pollutant loading calculations will be used to calculate reductions from installation of BMP's. This includes the RUSLE equation and the STEPL Model and improvement in results of Michigan DEQ's five-year sampling of biological and chemical indicators.

Criteria used to determine achievement of load reductions for sediment and improvements in dissolved oxygen are described above in section A. Numeric criteria are delineated by the state of Michigan Water Quality Standards. The planning committee should revisit the plan and TMDL's every two years to evaluate progress on achieving milestones and subsequent load reductions. A monitoring request will be made in TMDL watersheds after priority impairment sources have been corrected to determine if designated uses have been restored.

8.9 Monitoring (EPA Element I)

Chapter 3 provides an overview of previous monitoring done in Middle Cass River. From this evaluation data gaps have been identified that should be looked at within the context of a comprehensive monitoring strategy for this watershed. Table 3.2 shows data available for all of the subwatersheds of the Middle Cass River. Expanded and continued monitoring should occur in TMDL watersheds given information identified during the 2008 and 2011 inventory in Butternut Creek and Moore Drain. Additional monitoring should also occur in Clark Drain, Cedar Run, and Scott Drain given impairments identified during the 2011 inventory.

Two major monitoring initiatives continue in the watershed. The first is the five-year basin monitoring program stewarded by the Michigan DEQ and the continuation of the TMDL process. The second is initiated by the Cass River Greenway committee, based in Frankenmuth. Together, monitoring data will in theory measure improvements of Cass River water quality.

The Cass River Greenway monitoring effort is titled "Cass River Water Quality Monitoring Project", and was funded by State of Michigan Department of Environmental Quality –Water Resources Division-Office of Surface Water Assessment (Project # 2011-0501). The project provides baseline information regarding the main channel of the Cass River. A total of nine sampling sites were included near Cass City, Caro, Vassar, Frankenmuth, and Bridgeport (Table 8.24). Parameters tested at each site include: total phosphorus, total suspended solids, fecal coliform bacteria, nitrates, turbidity, temperature, pH, dissolved oxygen, and biological oxygen demand. A full report of the two-year study is available from Environmental Science Solutions, LLC and online at www.cassriver.org.

Site Name	Site ID	Municipality	County	Latitude	Longitude	Watershed
Cemetery Rd.	CC2	Cass City	Tuscola	43.5847	-83.1736	Cass River
Dodge Rd.	CC1	Cass City	Tuscola	43.5698	-83.2321	Cass River
Dayton Rd.	C2	Caro	Tuscola	43.4901	-83.3765	Cass River
Wells Rd.	C1	Caro	Tuscola	43.4503	-83.4401	Cass River
Caine Rd.	V2	Vassar	Tuscola	43.3924	-83.5222	Cass River
Huron Rd.	V1	Vassar	Tuscola	43.3712	-83.5803	Cass River
Bray Rd.	F2	Frankenmuth	Tuscola	43.3244	-83.6572	Cass River
Beyer Rd.	F1	Frankenmuth	Saginaw	43.3287	-83.7584	Cass River
Fort Rd.	B1	Bridgeport	Saginaw	43.3486	-83.8844	Cass River

Table 8.24 Sampling Sites for Cass River Water Quality Monitoring Project

It is assumed that major restoration projects completed during implementation will have separate monitoring plans and Quality Assurance Project Plans (QAPPs) established as a part of their funding requirements. Potential sites for restoration activities should be identified by at the beginning of any implementation effort to allow for pre-project and post-project monitoring. Monitoring should also include before and after pictures of implementation projects.

A comprehensive monitoring plan for the Upper Cass River is also recommended to fully evaluate necessary monitoring to fill data gaps, gather background information, and identify other potential water quality impairments or threats. Funding should be sought to develop and implement this Cass River Watershed monitoring plan from the MICorps program or similar funding opportunity. Building off of past monitoring efforts, the following parameters should be monitored at public access sites, and within each subwatershed to determine improvements or declines in water quality:

- E. Coli
- Fecal coliform bacteria
- Total dissolved solids
- Total suspended solids

- pH
- BOD
- Nitrates
- Total Nitrogen
- Total Phosphorus
- Ortho Phosphorus
- Turbidity
- Dissolved oxygen
- Temperature
- Diversity and quantity of macroinvertebrate taxa